Download and Read Online Poisson Structures Book

Download Poisson Structures Book PDF, Read Online Poisson Structures Book Epub. Ebook Poisson Structures Tuebl Download Online. The following is a list of various book titles based on search results using the keyword poisson structures. Click "GET BOOK" on the book you want. Register now and create a free account to access unlimited books, fast download, ad-free and books in good quality!

Poisson Structures

Author : Camille Laurent-Gengoux,Anne Pichereau,Pol Vanhaecke
Publisher : Springer Science & Business Media
Release : 2012-08-27
Category : Mathematics
ISBN : 9783642310904

CLICK HERE TO GET BOOK

Book Poisson Structures Description/Summary:

Poisson structures appear in a large variety of contexts, ranging from string theory, classical/quantum mechanics and differential geometry to abstract algebra, algebraic geometry and representation theory. In each one of these contexts, it turns out that the Poisson structure is not a theoretical artifact, but a key element which, unsolicited, comes along with the problem that is investigated, and its delicate properties are decisive for the solution to the problem in nearly all cases. Poisson Structures is the first book that offers a comprehensive introduction to the theory, as well as an overview of the different aspects of Poisson structures. The first part covers solid foundations, the central part consists of a detailed exposition of the different known types of Poisson structures and of the (usually mathematical) contexts in which they appear, and the final part is devoted to the two main applications of Poisson structures (integrable systems and deformation quantization). The clear structure of the book makes it adequate for readers who come across Poisson structures in their research or for graduate students or advanced researchers who are interested in an introduction to the many facets and applications of Poisson structures.​

Poisson Structures and Their Normal Forms

Author : Jean-Paul Dufour,Nguyen Tien Zung
Publisher : Springer Science & Business Media
Release : 2006-01-17
Category : Mathematics
ISBN : 9783764373351

CLICK HERE TO GET BOOK

Book Poisson Structures and Their Normal Forms Description/Summary:

The aim of this book is twofold. On the one hand, it gives a quick, self-contained introduction to Poisson geometry and related subjects. On the other hand, it presents a comprehensive treatment of the normal form problem in Poisson geometry. Even when it comes to classical results, the book gives new insights. It contains results obtained over the past 10 years which are not available in other books.

Lectures on Poisson Geometry

Author : Marius Crainic,Rui Loja Fernandes,Ioan Mărcuţ
Publisher : American Mathematical Soc.
Release : 2021-10-14
Category : Education
ISBN : 9781470466671

CLICK HERE TO GET BOOK

Book Lectures on Poisson Geometry Description/Summary:

This excellent book will be very useful for students and researchers wishing to learn the basics of Poisson geometry, as well as for those who know something about the subject but wish to update and deepen their knowledge. The authors' philosophy that Poisson geometry is an amalgam of foliation theory, symplectic geometry, and Lie theory enables them to organize the book in a very coherent way. —Alan Weinstein, University of California at Berkeley This well-written book is an excellent starting point for students and researchers who want to learn about the basics of Poisson geometry. The topics covered are fundamental to the theory and avoid any drift into specialized questions; they are illustrated through a large collection of instructive and interesting exercises. The book is ideal as a graduate textbook on the subject, but also for self-study. —Eckhard Meinrenken, University of Toronto

Integrable Systems in the realm of Algebraic Geometry

Author : Pol Vanhaecke
Publisher : Springer
Release : 2013-11-11
Category : Mathematics
ISBN : 9783662215357

CLICK HERE TO GET BOOK

Book Integrable Systems in the realm of Algebraic Geometry Description/Summary:

Integrable systems are related to algebraic geometry in many different ways. This book deals with some aspects of this relation, the main focus being on the algebraic geometry of the level manifolds of integrable systems and the construction of integrable systems, starting from algebraic geometric data. For a rigorous account of these matters, integrable systems are defined on affine algebraic varieties rather than on smooth manifolds. The exposition is self-contained and is accessible at the graduate level; in particular, prior knowledge of integrable systems is not assumed.

Cluster Algebras and Poisson Geometry

Author : Michael Gekhtman,Michael Shapiro,Alek Vainshtein
Publisher : American Mathematical Soc.
Release : 2010
Category : Mathematics
ISBN : 9780821849729

CLICK HERE TO GET BOOK

Book Cluster Algebras and Poisson Geometry Description/Summary:

Cluster algebras, introduced by Fomin and Zelevinsky in 2001, are commutative rings with unit and no zero divisors equipped with a distinguished family of generators (cluster variables) grouped in overlapping subsets (clusters) of the same cardinality (the rank of the cluster algebra) connected by exchange relations. Examples of cluster algebras include coordinate rings of many algebraic varieties that play a prominent role in representation theory, invariant theory, the study of total positivity, etc. The theory of cluster algebras has witnessed a spectacular growth, first and foremost due to the many links to a wide range of subjects including representation theory, discrete dynamical systems, Teichm�ller theory, and commutative and non-commutative algebraic geometry. This book is the first devoted to cluster algebras. After presenting the necessary introductory material about Poisson geometry and Schubert varieties in the first two chapters, the authors introduce cluster algebras and prove their main properties in Chapter 3. This chapter can be viewed as a primer on the theory of cluster algebras. In the remaining chapters, the emphasis is made on geometric aspects of the cluster algebra theory, in particular on its relations to Poisson geometry and to the theory of integrable systems.|Cluster algebras, introduced by Fomin and Zelevinsky in 2001, are commutative rings with unit and no zero divisors equipped with a distinguished family of generators (cluster variables) grouped in overlapping subsets (clusters) of the same cardinality (the rank of the cluster algebra) connected by exchange relations. Examples of cluster algebras include coordinate rings of many algebraic varieties that play a prominent role in representation theory, invariant theory, the study of total positivity, etc. The theory of cluster algebras has witnessed a spectacular growth, first and foremost due to the many links to a wide range of subjects including representation theory, discrete dynamical systems, Teichm�ller theory, and commutative and non-commutative algebraic geometry. This book is the first devoted to cluster algebras. After presenting the necessary introductory material about Poisson geometry and Schubert varieties in the first two chapters, the authors introduce cluster algebras and prove their main properties in Chapter 3. This chapter can be viewed as a primer on the theory of cluster algebras. In the remaining chapters, the emphasis is made on geometric aspects of the cluster algebra theory, in particular on its relations to Poisson geometry and to the theory of integrable systems.

The Breadth of Symplectic and Poisson Geometry

Author : Jerrold E. Marsden,Tudor S. Ratiu
Publisher : Springer Science & Business Media
Release : 2007-07-03
Category : Mathematics
ISBN : 9780817644192

CLICK HERE TO GET BOOK

Book The Breadth of Symplectic and Poisson Geometry Description/Summary:

* The invited papers in this volume are written in honor of Alan Weinstein, one of the world’s foremost geometers * Contributions cover a broad range of topics in symplectic and differential geometry, Lie theory, mechanics, and related fields * Intended for graduate students and working mathematicians, this text is a distillation of prominent research and an indication of future trends in geometry, mechanics, and mathematical physics

Lie Groups, Geometry, and Representation Theory

Author : Victor G. Kac,Vladimir L. Popov
Publisher : Springer
Release : 2018-12-12
Category : Mathematics
ISBN : 9783030021917

CLICK HERE TO GET BOOK

Book Lie Groups, Geometry, and Representation Theory Description/Summary:

This volume, dedicated to the memory of the great American mathematician Bertram Kostant (May 24, 1928 – February 2, 2017), is a collection of 19 invited papers by leading mathematicians working in Lie theory, representation theory, algebra, geometry, and mathematical physics. Kostant’s fundamental work in all of these areas has provided deep new insights and connections, and has created new fields of research. This volume features the only published articles of important recent results of the contributors with full details of their proofs. Key topics include: Poisson structures and potentials (A. Alekseev, A. Berenstein, B. Hoffman) Vertex algebras (T. Arakawa, K. Kawasetsu) Modular irreducible representations of semisimple Lie algebras (R. Bezrukavnikov, I. Losev) Asymptotic Hecke algebras (A. Braverman, D. Kazhdan) Tensor categories and quantum groups (A. Davydov, P. Etingof, D. Nikshych) Nil-Hecke algebras and Whittaker D-modules (V. Ginzburg) Toeplitz operators (V. Guillemin, A. Uribe, Z. Wang) Kashiwara crystals (A. Joseph) Characters of highest weight modules (V. Kac, M. Wakimoto) Alcove polytopes (T. Lam, A. Postnikov) Representation theory of quantized Gieseker varieties (I. Losev) Generalized Bruhat cells and integrable systems (J.-H. Liu, Y. Mi) Almost characters (G. Lusztig) Verlinde formulas (E. Meinrenken) Dirac operator and equivariant index (P.-É. Paradan, M. Vergne) Modality of representations and geometry of θ-groups (V. L. Popov) Distributions on homogeneous spaces (N. Ressayre) Reduction of orthogonal representations (J.-P. Serre)

Geometry and Physics: Volume 2

Author : Andrew Dancer,Jørgen Ellegaard Andersen,Oscar García-Prada
Publisher : Unknown
Release : 2018-10-25
Category : Uncategorized
ISBN : 9780198802020

CLICK HERE TO GET BOOK

Book Geometry and Physics: Volume 2 Description/Summary:

These texts contain 29 articles that cover a broad range of topics in differential, algebraic and symplectic geometry, and also in mathematical physics. These volumes will be of interest to researchers and graduate students in geometry and mathematical physics

Kähler-Poisson Algebras

Author : Ahmed Al-Shujary
Publisher : Linköping University Electronic Press
Release : 2020-02-18
Category : Uncategorized
ISBN : 9789179299095

CLICK HERE TO GET BOOK

Book Kähler-Poisson Algebras Description/Summary:

In this thesis, we introduce Kähler-Poisson algebras and study their basic properties. The motivation comes from differential geometry, where one can show that the Riemannian geometry of an almost Kähler manifold can be formulated in terms of the Poisson algebra of smooth functions on the manifold. It turns out that one can identify an algebraic condition in the Poisson algebra (together with a metric) implying that most geometric objects can be given a purely algebraic formulation. This leads to the definition of a Kähler-Poisson algebra, which consists of a Poisson algebra and a metric fulfilling an algebraic condition. We show that every Kähler- Poisson algebra admits a unique Levi-Civita connection on its module of inner derivations and, furthermore, that the corresponding curvature operator has all the classical symmetries. Moreover, we present a construction procedure which allows one to associate a Kähler-Poisson algebra to a large class of Poisson algebras. From a more algebraic perspective, we introduce basic notions, such as morphisms and subalgebras, as well as direct sums and tensor products. Finally, we initiate a study of the moduli space of Kähler-Poisson algebras; i.e for a given Poisson algebra, one considers classes of metrics giving rise to non-isomorphic Kähler-Poisson algebras. As it turns out, even the simple case of a Poisson algebra generated by two variables gives rise to a nontrivial classification problem. I denna avhandling introduceras Kähler-Poisson algebror och deras grundläggande egenskaper studeras. Motivationen till detta kommer från differentialgeometri där man kan visa att den metriska geometrin för en Kählermångfald kan formuleras i termer av Poisson algebran av släta funktioner på mångfalden. Det visar sig att man kan identifiera ett algebraiskt villkor i en Poissonalgebra (med en metrik) som gör det möjligt att formulera de flesta geometriska objekt på ett algebraiskt vis. Detta leder till definitionen av en Kähler-Poisson algebra, vilken utgörs av en Poissonalgebra och en metrik som tillsammans uppfyller ett kompatibilitetsvillkor. Vi visar att för varje Kähler-Poisson algebra så existerar det en Levi-Civita förbindelse på modulen som utgörs av de inre derivationerna, och att den tillhörande krökningsoperatorn har alla de klassiska symmetrierna. Vidare presenteras en konstruktion som associerar en Kähler-Poisson algebra till varje algebra i en stor klass av Poissonalgebror. Ur ett mer algebraiskt perspektiv så introduceras flera grundläggande begrepp, såsom morfier, delalgebror, direkta summor och tensorprodukter. Slutligen påbörjas en studie av modulirum för Kähler-Poisson algebror, det vill säga ekvivalensklasser av metriker som ger upphov till isomorfa Kähler-Poisson strukturer. Det visar sig att även i det enkla fallet med en Poisson algebra genererad av två variabler, så leder detta till ett icke-trivialt klassificeringsproblem.

The Many Facets of Geometry

Author : Oscar Garcia-Prada,Jean Pierre Bourguignon,Simon Salamon
Publisher : OUP Oxford
Release : 2010-07-01
Category : Mathematics
ISBN : 9780191567575

CLICK HERE TO GET BOOK

Book The Many Facets of Geometry Description/Summary:

Few people have proved more influential in the field of differential and algebraic geometry, and in showing how this links with mathematical physics, than Nigel Hitchin. Oxford University's Savilian Professor of Geometry has made fundamental contributions in areas as diverse as: spin geometry, instanton and monopole equations, twistor theory, symplectic geometry of moduli spaces, integrables systems, Higgs bundles, Einstein metrics, hyperkähler geometry, Frobenius manifolds, Painlevé equations, special Lagrangian geometry and mirror symmetry, theory of grebes, and many more. He was previously Rouse Ball Professor of Mathematics at Cambridge University, as well as Professor of Mathematics at the University of Warwick, is a Fellow of the Royal Society and has been the President of the London Mathematical Society. The chapters in this fascinating volume, written by some of the greats in their fields (including four Fields Medalists), show how Hitchin's ideas have impacted on a wide variety of subjects. The book grew out of the Geometry Conference in Honour of Nigel Hitchin, held in Madrid, with some additional contributions, and should be required reading for anyone seeking insights into the overlap between geometry and physics.

Issues in Applied Mathematics: 2011 Edition

Author : Anonim
Publisher : ScholarlyEditions
Release : 2012-01-09
Category : Mathematics
ISBN : 9781464965067

CLICK HERE TO GET BOOK

Book Issues in Applied Mathematics: 2011 Edition Description/Summary:

Issues in Applied Mathematics / 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Applied Mathematics. The editors have built Issues in Applied Mathematics: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Applied Mathematics in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Applied Mathematics: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Hamiltonian Systems and Celestial Mechanics

Author : J Delgado,E A Lacomba,E Pérez-Chavela,J Llibre
Publisher : World Scientific
Release : 2000-10-09
Category : Science
ISBN : 9789814492119

CLICK HERE TO GET BOOK

Book Hamiltonian Systems and Celestial Mechanics Description/Summary:

This volume is an outgrowth of the Third International Symposium on Hamiltonian Systems and Celestial Mechanics. The main topics are Arnold diffusion, central configurations, singularities in few-body problems, billiards, area-preserving maps, and geometrical mechanics. All papers in the volume went through the refereeing process typical of a mathematical research journal. Contents:The Rhomboidal Charged Four Body Problem (F Alfaro & E Pérez-Chavela)Planetary Rings with Shepherds (L Benet & T H Seligman)Low Reynolds Number Swimming in Two Dimensions (A Cherman et al.)2-Dimensional Invariant Tori for the Spatial Isosceles 3-Body Problem (M Corbera & J Llibre)The Global Flow for the Synodical Spatial Kepler Problem (M P Dantas & J Llibre)Unbounded Growth of Energy in Periodic Perturbations of Geodesic Flows of the Torus (A Delshams et al.)Splitting and Melnikov Potentials in Hamiltonian Systems (A Delshams & P Gutiérrez)Infinity Manifolds of Cubic Polynomial Hamiltonian Vector Fields with 2 Degrees of Freedom (M Falconi et al.)Relativistic Corrections to Elementary Galilean Dynamics and Deformations of Poisson Brackets (R Flores-Espinoza & Y M Vorobjev)Heteroclinic Phenomena in the Sitnikov Problem (A García & E Pérez-Chavela)Doubly-Symmetric Periodic Solutions of Hill's Lunar Problem (R C Howison & K R Meyer)On Practical Stability Regions for the Motion of a Small Particle Close to the Equilateral Points of the Real Earth-Moon System (À Jorba)Variational Methods for Quasi-Periodic Solutions of Partial Differential Equations (R de la Llave)The Splitting of Invariant Lagrangian Submanifolds: Geometry and Dynamics (J-P Marco)Cross-Sections in the Planar N-Body Problem (C McCord)Existence of an Additional First Integral and Completeness of the Flow for Hamiltonian Vector Fields (J Muciño-Raymundo)Simplification of Perturbed Hamiltonians Through Lie Transformations (J Palacián & P Yanguas)Linear Stability in the 1 + N-Gon Relative Equilibrium (G E Roberts)Analytic Continuation of Circular and Elliptic Kepler Motion to the General 3-Body Problem (J Soler)The Phase Space of Finite Systems (K B Wolf et al.) Readership: Students and researchers in mathematics and nonlinear dynamics. Keywords:Charged Four Body Problem;Low Reynolds Number;Relativistic Corrections;Sitnikov Problem;Hill's Lunar Problem;Invariant Lagrangian Submanifolds;Planar N-Body Problem;Elliptic Kepler Motion

Lectures on the Geometry of Poisson Manifolds

Author : Izu Vaisman
Publisher : Birkhäuser
Release : 2012-12-06
Category : Mathematics
ISBN : 9783034884952

CLICK HERE TO GET BOOK

Book Lectures on the Geometry of Poisson Manifolds Description/Summary:

This book is addressed to graduate students and researchers in the fields of mathematics and physics who are interested in mathematical and theoretical physics, differential geometry, mechanics, quantization theories and quantum physics, quantum groups etc., and who are familiar with differentiable and symplectic manifolds. The aim of the book is to provide the reader with a monograph that enables him to study systematically basic and advanced material on the recently developed theory of Poisson manifolds, and that also offers ready access to bibliographical references for the continuation of his study. Until now, most of this material was dispersed in research papers published in many journals and languages. The main subjects treated are the Schouten-Nijenhuis bracket; the generalized Frobenius theorem; the basics of Poisson manifolds; Poisson calculus and cohomology; quantization; Poisson morphisms and reduction; realizations of Poisson manifolds by symplectic manifolds and by symplectic groupoids and Poisson-Lie groups. The book unifies terminology and notation. It also reports on some original developments stemming from the author's work, including new results on Poisson cohomology and geometric quantization, cofoliations and biinvariant Poisson structures on Lie groups.

Integrable Systems and Foliations

Author : Claude Albert,Robert Brouzet,Jean P. Dufour
Publisher : Springer Science & Business Media
Release : 2012-12-06
Category : Mathematics
ISBN : 9781461241348

CLICK HERE TO GET BOOK

Book Integrable Systems and Foliations Description/Summary:

The articles in this volume are an outgrowth of a colloquium "Systemes Integrables et Feuilletages," which was held in honor of the sixtieth birthday of Pierre Molino. The topics cover the broad range of mathematical areas which were of keen interest to Molino, namely, integral systems and more generally symplectic geometry and Poisson structures, foliations and Lie transverse structures, transitive structures, and classification problems.

Hamiltonian Methods in the Theory of Solitons

Author : Ludwig Faddeev,Leon Takhtajan
Publisher : Springer Science & Business Media
Release : 2007-08-10
Category : Science
ISBN : 9783540699699

CLICK HERE TO GET BOOK

Book Hamiltonian Methods in the Theory of Solitons Description/Summary:

The main characteristic of this classic exposition of the inverse scattering method and its applications to soliton theory is its consistent Hamiltonian approach to the theory. The nonlinear Schrödinger equation is considered as a main example, forming the first part of the book. The second part examines such fundamental models as the sine-Gordon equation and the Heisenberg equation, the classification of integrable models and methods for constructing their solutions.

An Invitation to Noncommutative Geometry

Author : Masoud Khalkhali,Matilde Marcolli
Publisher : World Scientific
Release : 2008
Category : Mathematics
ISBN : 9789812706164

CLICK HERE TO GET BOOK

Book An Invitation to Noncommutative Geometry Description/Summary:

This is the first existing volume that collects lectures on this important and fast developing subject in mathematics. The lectures are given by leading experts in the field and the range of topics is kept as broad as possible by including both the algebraic and the differential aspects of noncommutative geometry as well as recent applications to theoretical physics and number theory.